Accueil/ expose
Prototype-based classifiers and relevance learning
jeudi 27 février 2020

Loading the player...
Descriptif

Exposé de Michael Biehl (University of Groningen) dans le cadre du Data Science Colloqiuum de l'ENS. 

This talk briefly reviews important aspects of prototype based systems in the context of supervised learning. A key issue is the choice of an appropriate distance or similarity measure for the task at hand. The powerful framework of relevance learning will be discussed, in which parameterized distance measures are adapted together with the prototypes in the same data-driven training process. Example applications in the bio-medical domain are presented in order to illustrate the concept: (I) the classification of adrenocortical tumors using steroid metabolomics data, (II) the early diagnosis of rheumatoid arthritis based on cytokine expression and (III) the detection and discrimination of neuro- degenerative diseases in 3D brain images.

Voir aussi


  • Aucun exposé du même auteur.
  • Can Big Data cure Cancer?
    Jean-Philippe Vert
  • What physics can tell us about inferenc...
    Cristopher Moore
  • Beyond stochastic gradient descent for l...
    Francis Bach
  • The brain as an optimal efficient adapti...
    Sophie Deneve
  • Cosmostatistics: Tackling Big Data from ...
    Jean-Luc Starck
  • Searching for interaction networks in pr...
    Rémi Monasson
  • Brain-computer interfaces: two concurren...
    Maureen Clerc
  • Machine learning in scientific workflow...
    Balàzs Kégl
  • Learning Graph Inverse Problems with Neu...
    Joan Bruna
  • Towards developmental AI
    Emmanuel Dupoux
  • Optimization's Hidden Gift to Learning: ...
    Nathan Srebro
  • Generative modelling with diffusion : th...
    Valentin De Bortoli
Auteur(s)
Michael Biehl
University of Groningen
Physicien / Professeur en informatique

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

Michael Biehl est professeur en informatique, apprentissage automatique et intelligence informatique.

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger la vidéo
   - Télécharger l'audio (mp3)

Dernière mise à jour : 24/06/2020