Accueil/ expose
Contextual effects, image statistics, and deep learning
mardi 07 décembre 2021

Loading the player...
Descriptif

Conférence de Odelia Schwartz (University of Miami) dans le cadre du Colloquium du département d'Etudes Cognitives de l'ENS-PSL.

Neural responses and perception of visual inputs strongly depend on the spatial context, i.e., what surrounds a given object or feature. I will discuss our work on developing a visual cortical model based on the hypothesis that neurons represent inputs in a coordinate system that is matched to the statistical structure of images in the natural environment. The model generalizes a nonlinear computation known as normalization, that is ubiquitous in neural processing, and can capture some spatial context effects in cortical neurons. I will further discuss how we are incorporating such nonlinearities into deep neural networks.

Voir aussi


  • Aucun exposé du même auteur.
  • Base neurale de la mémoire spatiale : Po...
    Alain Berthoz
  • Interprétations spontanées, inférences p...
    Emmanuel Sander
  • Cognitive, developmental and cultural ba...
    Atsushi Senju
  • The origin of prosociality : a comparati...
    Nicolas Claidière
  • (Dis)organizational principles for neuro...
    Miguel Maravall Rodriguez
  • From speech to language in infancy
    Alejandrina Cristia
  • The Neural Marketplace
    Kenneth Harris
  • Why the Internet won't get you any more ...
    Robin Dunbar
  • Synergies in Language Acquisition
    Mark Johnson
  • The neuroeconomics of simple choice
    Antonio Rangel
  • Phonological Effects on the Acquisition ...
    Katherine Demuth
  • Inner speech in action : EMG data durin...
    Hélène Loevenbruck
  • Use of phonetic detail in word learning
    Paola Escudero
  • What is special about eye contact ?
    Laurence Conty
  • The inference theory of discourse refere...
    Amit Almor
  • Syntactic computations, the cartography ...
    Luigi Rizzi
  • Levels of communication and lexical sema...
    Peter Gärdenfors
  • Amygdalar mechanisms for innate, learne...
    Daniel Salzman
  • Explanation and Inference
    Igor Douven
  • Consciousness, Action, PAM !
    Thor Grunbaum
  • Principles of Neural Design
    Peter Sterling
  • Precursors to valuation
    Timothy Behrens
  • Is machine learning a good model of huma...
    Yann LeCun
  • Following and leading social gaze
    Andrew Bayliss
  • It’s the neuron: how the brain really wo...
    Charles Randy Gallistel
  • Biological Information: Genetic, epigene...
    Paul Griffiths
  • From necessity to sufficiency in memory ...
    Karim Benchenane
  • Comparing the difficulty of different ty...
    LouAnn Gerken
  • A big data approach towards functional b...
    Bertrand Thirion
  • Sign language and language emergence
    Marie Coppola
  • The collaborative making of an encyclope...
    Dario Taraborelli
  • The Evolution of Punishment
    Nichola Raihani
  • Metacontrol of reinforcement learning
    Sam Gershman
  • Homo Cyberneticus: Neurocognitive consid...
    Tamar Makin
  • Reverse Engineering Visual Intelligence
    Jim DiCarlo
  • What is listening effort?
    Ingrid Johnsrude
  • Genomic analysis of 1.5 million people r...
    Paige Harden
  • The Language of Life: exploring the orig...
    Catherine Hobaiter
  • Deliberate ignorance: The curious choic...
    Ralph Hertwig
  • The social brain in adolescence
    Sarah-Jayne Blakemore
  • Big data about small people: Studying ch...
    Michael Frank
  • Individual Differences in Lifespan Cogni...
    Stuart Richie
  • Why are humans still smarter than machin...
    James L. (Jay) McClelland
  • Problem solving in acellular slime mold...
    Audrey Dussutour
  • Redrawing the lines between language an...
    Neil Cohn
  • Choice and value : the biology of decisi...
    Alex Kacelnik
  • What happened to the 'mental' in 'menta...
    Joseph LeDoux
  • Rethinking sex and the brain: Beyond th...
    Daphna Joel
  • How robust are meta-analyses to publicat...
    Maya Mathur
  • How family background affects children’...
    Sophie Von Stumm
Auteur(s)
Odelia Schwartz
University of Miami
Professeure

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

Odelia Schwartz est professeure associée au département d'informatique de l'université de Miami. Ses recherches se situent à l'intersection des sciences du cerveau et de l'apprentissage automatique. Elle s'est principalement attachée à comprendre comment le cerveau donne un sens aux informations visuelles dans le monde.

Elle a obtenu un doctorat au Center for Neural Science de l'université de New York et un master en informatique à l'université de Floride. Elle a effectué ses recherches postdoctorales à l'Institut Salk. Ses recherches ont été financées par la NSF, le NIH, l'Army Research Office, une bourse de recherche de la faculté de Google et une bourse de recherche Alfred P. Sloan.

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger la vidéo

Dernière mise à jour : 16/12/2021