Accueil/ expose
How robust are meta-analyses to publication bias? Sensitivity analysis methods and empirical findings
mardi 07 mars 2023

Loading the player...
Descriptif

Publication bias can distort meta-analytic results, sometimes justifying considerable skepticism toward meta-analyses. This talk will discuss recently developed statistical sensitivity analyses for publication bias, which enable statements such as: “For publication bias to shift the observed point estimate to the null, ‘significant’ results would need to be at least 10-fold more likely to be published than negative or ‘non-significant’ results” or “no amount of publication bias could explain away the average effect.” The methods are based on inverse-probability weighted estimators and use robust estimation methods to accommodate non-normal population effects, small meta-analyses, and clustering. Additionally, a meta-analytic point estimate corrected for “worst-case” publication bias can be obtained simply by conducting a standard meta-analysis of only the negative and nonsignificant studies; this method sometimes indicates that no amount of such publication bias could explain away the results. I will describe the results of applying the methods to a systematic sample of 58 meta-analyses across multiple scientific disciplines. All methods are implemented in the R package PublicationBias.

Support en PDF de la conférence de Maya Mathur.

Conférence de Maya Mathur ((Stanford University) dans le cadre du Colloquium du département d'Etudes Cognitives de l'ENS-PSL.

 

Voir aussi


  • Aucun exposé du même auteur.
  • Base neurale de la mémoire spatiale : Po...
    Alain Berthoz
  • Interprétations spontanées, inférences p...
    Emmanuel Sander
  • Cognitive, developmental and cultural ba...
    Atsushi Senju
  • The origin of prosociality : a comparati...
    Nicolas Claidière
  • (Dis)organizational principles for neuro...
    Miguel Maravall Rodriguez
  • From speech to language in infancy
    Alejandrina Cristia
  • The Neural Marketplace
    Kenneth Harris
  • Why the Internet won't get you any more ...
    Robin Dunbar
  • Synergies in Language Acquisition
    Mark Johnson
  • The neuroeconomics of simple choice
    Antonio Rangel
  • Phonological Effects on the Acquisition ...
    Katherine Demuth
  • Inner speech in action : EMG data durin...
    Hélène Loevenbruck
  • Use of phonetic detail in word learning
    Paola Escudero
  • What is special about eye contact ?
    Laurence Conty
  • The inference theory of discourse refere...
    Amit Almor
  • Syntactic computations, the cartography ...
    Luigi Rizzi
  • Levels of communication and lexical sema...
    Peter Gärdenfors
  • Amygdalar mechanisms for innate, learne...
    Daniel Salzman
  • Explanation and Inference
    Igor Douven
  • Consciousness, Action, PAM !
    Thor Grunbaum
  • Principles of Neural Design
    Peter Sterling
  • Precursors to valuation
    Timothy Behrens
  • Is machine learning a good model of huma...
    Yann LeCun
  • Following and leading social gaze
    Andrew Bayliss
  • It’s the neuron: how the brain really wo...
    Charles Randy Gallistel
  • Biological Information: Genetic, epigene...
    Paul Griffiths
  • From necessity to sufficiency in memory ...
    Karim Benchenane
  • Comparing the difficulty of different ty...
    LouAnn Gerken
  • A big data approach towards functional b...
    Bertrand Thirion
  • Sign language and language emergence
    Marie Coppola
  • The collaborative making of an encyclope...
    Dario Taraborelli
  • The Evolution of Punishment
    Nichola Raihani
  • Metacontrol of reinforcement learning
    Sam Gershman
  • Homo Cyberneticus: Neurocognitive consid...
    Tamar Makin
  • Reverse Engineering Visual Intelligence
    Jim DiCarlo
  • What is listening effort?
    Ingrid Johnsrude
  • Genomic analysis of 1.5 million people r...
    Paige Harden
  • The Language of Life: exploring the orig...
    Catherine Hobaiter
  • Deliberate ignorance: The curious choic...
    Ralph Hertwig
  • The social brain in adolescence
    Sarah-Jayne Blakemore
  • Big data about small people: Studying ch...
    Michael Frank
  • Individual Differences in Lifespan Cogni...
    Stuart Richie
  • Why are humans still smarter than machin...
    James L. (Jay) McClelland
  • Contextual effects, image statistics, an...
    Odelia Schwartz
  • Problem solving in acellular slime mold...
    Audrey Dussutour
  • Redrawing the lines between language an...
    Neil Cohn
  • Choice and value : the biology of decisi...
    Alex Kacelnik
  • What happened to the 'mental' in 'menta...
    Joseph LeDoux
  • Rethinking sex and the brain: Beyond th...
    Daphna Joel
  • How family background affects children’...
    Sophie Von Stumm
Auteur(s)
Maya Mathur
Stanford university
Statisticienne

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

Maya Mathur est professeure adjointe à l'unité des sciences quantitatives et au département de pédiatrie de l'université de Stanford. Elle est directrice associée du Stanford Data Science's Center for Open and Reproducible Science (CORES).

Elle est statisticienne et ses recherches méthodologiques portent sur la méta-analyse et d'autres formes de synthèse des données, ainsi que sur l'inférence causale. Elle a reçu des prix de la Society for Epidemiologic Research (2022), de la Society for Research Synthesis Methods (2022) et de l'American Statistical Association (2018).

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger la vidéo

Dernière mise à jour : 07/04/2023