Accueil/ expose
Can Big Data cure Cancer?
mardi 11 octobre 2016

Loading the player...
Descriptif

Conférence de Jean-Philippe Vert lors du colloquium Data Science Colloquium of the ENS

This colloquium is organized around data sciences in a broad sense, with the goal of bringing together researchers with diverse backgrounds (including mathematics, computer science, physics, chemistry and neuroscience) but a common interest in dealing with large scale or high dimensional data.

As the cost and throughput of genomic technologies reach a point where DNA sequencing is close to becoming a routine exam at the clinics, there is a lot of hope that treatments of diseases like cancer can dramatically improve by a digital revolution in medicine, where smart algorithms analyze « big medical data » to help doctors take the best decisions for each patient or to suggest new directions for drug development. While artificial intelligence and machine learning-based algorithms have indeed had a great impact on many data-rich fields, their application on genomic data raises numerous computational and mathematical challenges that I will illustrate on a few examples of patient stratification or drug response prediction from genomic data.

Voir aussi


  • Méthodes statistiques de noyau en biolog...
    Jean-Philippe Vert
  • What physics can tell us about inferenc...
    Cristopher Moore
  • Beyond stochastic gradient descent for l...
    Francis Bach
  • The brain as an optimal efficient adapti...
    Sophie Deneve
Auteur(s)
Jean-Philippe Vert
ENS / Institut Curie / Mines ParisTech
Chercheur en bio-informatique

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

Jean-Philippe Vert est directeur du Centre de bio-informatique à Mines ParisTech et directeur adjoint de l’unité « Cancer et génome : bio-informatique, biostatistiques et épidémiologie d'un système complexe » associant Mines ParisTech, l’Institut Curie et l’INSERM.

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger la vidéo
   - Télécharger l'audio (mp3)

Dernière mise à jour : 24/11/2016